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Validating VANE for UGVs
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UGV Autonomy Systems
NREC Vehicle “Crusher”, performing navigation 
tasks for Darpa UPI Field Testing

Complex system in non-trivial 
terrain. Expensive and time 

consuming to test
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Autonomy System Basics

Perception/Modeling Path Planning

Sensor Server Vehicle Controller
Images, XYZ points, …
(Custom Interfaces)

Images, XYZ points, …

Cost map

Speed +
Steering

Motor 
commands

Motor, wheel, 
suspension status

Vehicle 
Sensors
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(Custom Interfaces)

Images, XYZ points, …

Cost map

Speed +
Steering

Motor 
commands

Motor, wheel, 
suspension status

Vehicle 
Sensors

Simulator



March 2009
6

Simulation as a Test Harness

Visual

Rendering 
of 

simulated 
ladar 
scans

Operator GUI

VERSaT 1: DARPA PerceptOR Program
Virtual Environment for Robotic Simulation and Test
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VERSAT2 (NREC/TARDEC)
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Main Challenge: Real-Time Fidelity 
• Simulators are useful, but lack fidelity

• World
– Limited polygons, e.g. no grass or similar (1 blade/mm2 106 blades/m2)
– No mud, water, or similar…

• Ladar Sensors
– No motion during scan (~13 msec staticshots)
– No range or angular noise, with first return only
– No attention/non-returns (reflectance, range, foreshortening, …)

• Imaging and Stereo sensors
– Easy to add but difficult to model well

• Vehicle
– No suspension, tire ground modeling, friction/dynamics modeling
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Example from Real Data

Pond

Lack of fidelity significant impacts simulation vs
real vehicle performance comparisons
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VANE/NREC Effort

• Summary so far:
– Simulation is very useful for UGVs, but fidelity 

gap limits its use and effectiveness

• However, ERDC’s VANE is a high fidelity 
simulator derived from physics models

• VANE/NREC Project goal

Investigate if VANE can address fidelity gap and 
create realistic simulation environment
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Evaluating VANE
• How do we evaluate simulator quality?

– Run robot autonomy and evaluate resulting decisions 
• Should match real vehicle decisions in the real world
• Path planning cost maps represent this knowledge

• NREC/ERDC approach
– Simulation of a known world location and collect real 

data from that location
– Compare cost maps generated by robot autonomy 

perception on simulated sensory data and real data
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Approach: Data Collection (NREC)

1. Collect field test data from a real UGV
• Data stored to time-stamped logs

Developed on the UPI, UGCV, and 
PerceptOR programs

6 Tilting LiDars
4 Camera “Cubes”

1xRGB Stereo head
1xNIR Camera
1xDark Red Camera

DGPS/RTK INS system
Suspension sensors
Many vehicle sensors
Calibrated models
NREC Autonomy SW
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Approach: Model Generation

2. Extract world model data and generate 
VANE model of a real environment

UPI Log

Manual photos, world description, 
physical plant specimens

Vehicle imagery

Vehicle pose, sensor poses

Colorized-Ladar point cloud

ERDC VANE 
model generation
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Approach: Simulation (ERDC)

3. Run VANE Simulator and generate 
Simulated sensor data

• Data registered to true vehicle sensor poses

UPI Log

Extracted sensor poses 
and characteristics

Generated Model

Simulated Sensor Data

ERDC VANE
Simulator
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Approach: Run Autonomy (NREC)

4. Run NREC autonomy SW on simulated 
and real data and compare cost maps

Captured 
UPI Log

UPI Software

UPI Software

Simulated 
UPI Log

Cost Map 
Generation

Compare

Result
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Testing Site
• Fort Drum NY, June 2008, with an open field, rocks, small vegetation 

and hay bails
– Positive obstacles (rocks, hay bails)

– “Soft” obstacles (vegetation)

Obstacles, 
High cost

Free space,
Very low cost

Navigable,
Low cost



Data Collection

• 6 Runs recorded at around 6pm with 
NREC’s Crusher vehicle

• Only forward looking sensors used
• 5 Runs used for model construction

– Data provided to ERDC

• 1 run held back for evaluation
– Sensor poses provided to ERDC for simulation

March 2009
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Data Collection Vehicle

NREC UPI “Crusher” Platform



Tilting Ladar Sensors

Tilting ~45°
variable tilt rate

SICK LMS 291-S14 sensor. Scans a line with equal angle spacing. Each scan has 181 
range readings left to right in 0.5º deg increments [-45º, 45.5º]. 75 line scans per second.

012

L1

(upx, upy, upz) 

(lookatx, lookaty, lookatz) 

Pose: (x, y, z) 

** All coords in UTM 

X = Easting (m)

Y = Northing (m)

Z = Height (m)

L2 L3 L4



Sick Scan Model

View from above

Looking direction

-45° 45.5°
Returned 
distance

-0.5°
spacing

181 readings per scan. 
Scans at 75Hz

23.2 15.1 29.6 100.0…

Range values returned

Readings > 80m are 
ignored (ie. open space)



Camera Sensors

2 x RGB Cameras
1 x Red
1 x Near IR

Cameras based off the Bumblebee 1 stereo head from PointGrey. The color stereo head has two 
images (de-bayerized) with 512x384 RGB @ 15Hz. The second stereo head consists of two gray scale 
cameras with Red and NIR filters respectively. Each produces 1024x768 single channel @ 15 Hz

(upx, upy, upz) 

(lookatx, lookaty, lookatz) 

Pose: (x, y, z) 

** All coords in UTM 

X = Easting (m)

Y = Northing (m)

Z = Height (m)

2 x RGB Cameras
1 x Red
1 x Near IR



Perspective Camera Model

Looking direction
Aligned with optical axis

Optical center 
(corresponds to 
“lens” location, 
and “eye” point)

Ideal pinhole model. Defined by 
• Effective focal length fx ~ fy = f
• Optical center assumed to be in center of image
• Imaging surface size (w, h)

“up”



Outline

• UGV’s and simulation
• Problem approach
• Real robot data
• Simulated results
• Cost map Comparisons
• Conclusions

March 2009
25



March 2009
26

Real Sensor Data: Imagery

• Front looking right cameras

Red NIR

Left Right

Perspective 
affects, light 
scattering, 
diffuse lighting, 
…



Real Data: Colorized Ladar Scans

27March 2009

Reconstructed 
from vehicle 
poses



Real Data: Colorized Range Data
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Top view

Note “holes” caused 
by occlusion
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General Data Flow

• Sensor data for model and sensor poses for 
simulation sent to ERDC

UPI Data 
logs

Model 
Construction

Extraction 
Utility

Model 
Simulation

Log-file 
Generator

UPI 
System

Costmap
Comparison Results

Pt cloud, imagery

Sensor poses

Intrinsics

Binary sensory data: 
Lidar scans, RGB-
Red/NIR imagery.

ERDCNREC



ERDC Generated Scene
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Vegetation
Hay Bails



ERDC Generated Scene
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Vegetation

Hay Bails



Cost Map Comparisons

• Run both sets of data through UPI System 
and produce cost maps

• Cost map representation:
– Low cost represents “free space”
– High cost represents “obstacles”
– Vegetation often in between
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Cost Map Analysis

• Visualizations:
– Log of cost value (to show dynamic range)

• Evaluations
– Direct pixel subtraction
– Subtraction with median filtering (reduce edge 

effects that may occur)
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Real Data Cost Map
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Higher values indicate higher cost areas ie: 
areas vehicle prefers not to go through. 
Log(cost) is shown to show dynamic range



Real Data Cost Map
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Major obstacles

Higher values indicate higher cost areas ie: 
areas vehicle prefers not to go through. 
Log(cost) is shown to show dynamic range

Vegetation

Areas of high cost due to vegetation 
and occluded ground layer



Simulated Cost Map
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Higher values indicate higher cost areas ie: 
areas vehicle prefers not to go through. 
Log(cost) is shown to show dynamic range



Simulated Cost Map
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Higher values indicate higher cost areas ie: 
areas vehicle prefers not to go through. 
Log(cost) is shown to show dynamic range

Hay Bails

Vegetation

No area of high cost



Raw absolute Pixel Subtraction
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Median Filtered Difference
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Cost difference is 
insignificant

Cost difference at 
back of vegetation

General agreement on obstacles 
and majority vegetation



Median Filtered Difference (9x9)
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Discussion
• Coarse comparison is good

– Strong expectation that vehicle will follow same trajectories

– Geometric obstacles (hay bails) produce very similar costs

• Key cost differences for area just behind vegetation
• Deeper analysis shows higher cost is associated with 

ground estimation in real data
– If ground level is inferred by vehicle (vs. directly being observed), 

cost estimate is higher

• Most likely causes
– Differences in vehicle pose vs. true vehicle pose relative to ground 

caused by pose error

– Different modeled height/size/density of vegetation
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Real Data

43March 2009

Vegetation 

Inferred ground height due to 
occlusion, create higher cost areas

Vehicle trajectory



Conclusions
• First phase comparisons are good

– Strong evidence that vehicle trajectories in simulation 
will match real vehicle performance

• Some challenges identified
– Pose error in data collection is an issue
– No good tools for rapid model building
– Vegetation differences (for perception) may become a 

more significant issue in more complex terrain
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